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Harvest = A summary of research informing scaling up of biofortification to improve nutrition
and health globally

Better Crops * Better Nutrition

HarvestPlus leads a global effort to improve nutrition by catalyzing the development and scaling up of staple
food crops that are rich in essential vitamins and minerals, also known as micronutrients. This term is used
because people need only very small amounts of micronutrients for good health, but in fact many people are
micronutrient deficient, leading to serious health issues.

The process used to develop these nutritious crops is known as biofortification: a cost-effective, sustainable
solution that uses conventional plant breeding and agronomic practices to increase the density of
micronutrients such as vitamin A, iron, and zinc in staple crops consumed widely as part of everyday diets in
Africa, Asia, and Latin America and the Caribbean (LAC). Micronutrient malnutrition is also called “hidden
hunger” because of its often-invisible warning signs. Hidden hunger impairs the cognitive and physical
development of children and adolescents, and the productivity of adults, thereby impairing their health and
both short- and long-term livelihood potential.

Biofortification helps reduce the gap between micronutrient requirements and intake by increasing the content
of dietary vitamins and minerals contained in staple foods. HarvestPlus focuses on tackling vitamin A, iron,
and zinc deficiency, which contribute to the greatest burden of disease associated with “hidden hunger”
worldwide. [1] Biofortified crops are particularly effective in delivering micronutrients to rural communities in
low- and middle-income countries, where the majority of small-holder farming households who produce and
eat staple food crops reside, and where year-around diverse diets, commercially fortified foods, or
micronutrient supplements are often inaccessible or unaffordable, or both.

Women, young children, and adolescent girls are the primary targets of biofortification because they have
relatively high nutrient needs that are often unmet because of dietary habits, cultural norms, insufficient
micronutrient-dense foods, and other factors that increase their biological vulnerability to infections. These
high nutrient requirements derive mostly from rapid prenatal and postnatal growth and menstrual blood loss.
Interventions that improve nutrition in the preconception phase are key to preventing the intergenerational
cycle of malnutrition [2].

Addressing malnutrition in young adults and women is key to ensuring the best start in life for future children
and generations. A key advantage of delivering micronutrients through staple foods is that—unlike with
micronutrient dense animal-sourced foods, fruits, and vegetables—discriminatory differential food allocation
within a household does not usually happen [3]. Biofortified staple crops are therefore an equitable vehicle for
improving micronutrient intake since staple foods are consumed by all members of a household as their
primary, everyday source of food.

HarvestPlus works with more than 450 partners worldwide. It partners with crop breeding centers of the
international agricultural research network known as the CGIAR to ensure conventionally bred varieties of
nutritious, high-yielding, and climate smart staple crops are developed and available for testing and release by
national agricultural research systems (NARS) in low- and middle-income countries. Through carefully
designed studies, HarvestPlus and its partners measure the impact of biofortified crop consumption on
women, adolescent girls, and children’s nutritional status and functional outcomes, such as cognitive and
physical performance. Delivery progress, in outcomes such as adoption and diffusion, as well as delivery
program performance are captured through HarvestPlus’ rigorous monitoring, evaluation and learning
system. Assessments of the effectiveness, cost-effectiveness, and impact of various delivery strategies are
tested, estimated or evaluated along staple crop value chains to capture and share lessons learned to catalyze
scale-up.
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Over the last 16 years, research conducted by HarvestPlus and its partners has demonstrated that:

e Conventional crop breeding can increase nutrient levels without compromising yield and other traits
preferred by farmers and consumers.

e Additional nutrients in crops can measurably improve micronutrient status, health, and cognitive and
physical abilities.

e Farmers are willing to grow biofortified crops and consumers are willing to eat them, and the cost-
effectiveness and impact of different delivery models are tested to inform scaling up of biofortification.

e \When targeted correctly, biofortification can contribute to the improvement of food systems to deliver
nutritious foods cost-effectively and with minimum behavior change.

Synthesis of the research on these questions have been regularly and systematically published as peer
reviewed journal articles, book chapters, and discussion papers, [4-10] as well as in a special issue of the
Annals of the New York Academy of Sciences [11]. Similarly, country programes, i.e., in country crop
development and delivery efforts for biofortified crops, have been reviewed and documented in various
publications [12, 13] in addition to a special issue of the African Journal of Food, Agriculture, Nutrition, and
Development [14].

By the end of 2018, 7.6 million farming households were growing biofortified planting material, benefiting
about 38 million people. By the end of 2030, HarvestPlus aims for one billion people to consume biofortified
foods globally. During its current program phase (2018—-2022), HarvestPlus aims to catalyze scaling up of
biofortification by investing in (1) expanding the scientific evidence on efficacy and effectiveness to stimulate
advocacy and policy efforts; (2) mobilization of the knowledge on delivery models tested and (3) delivery in 30
priority countries selected based on their potential for the most significant impact on micronutrient
deficiencies through biofortification.

Conventional crop breeding can increase nutrient levels without compromising yield

From 2004 to the end of 2018, HarvestPlus has directly facilitated the release of 211 varieties of 11 biofortified
crops, including iron beans and pearl millet; vitamin A cassava, maize, and sweet potato; zinc maize rice and
wheat, in over 30 countries. Thousands of other varietal lines are in testing in these countries, and over 30
more'. The biofortified varieties of staple crops are bred to fulfill a biologically important portion of the dietary
requirements of vitamin A, iron, or zinc for women and children, in populations where these crops are
consumed as staples. Based on usual eating patterns in these populations, it is estimated that for children 4
to 6 years old and for non-pregnant, non-lactating women of reproductive age, biofortified iron beans and iron
pearl millet can provide up to 8o percent of the daily estimated average requirements (EARs); zinc wheat and
zinc rice can provide up to 50 percent of average daily zinc needs; vitamin A maize can provide up to 50
percent of average daily vitamin A needs, and vitamin A cassava and sweet potato can provide up to 100
percent of average daily vitamin A needs, respectively.

These released varieties deliver at least 50 percent of the intended micronutrient level and the releases are
approved by the official national release committees of these countries, demonstrating that it is possible to
increase the micronutrient content of these crops using conventional crop breeding techniques without
sacrificing other production and consumption attributes that farmers and consumers prefer. Crop
improvement continues, with researchers developing varieties with ever-higher levels of vitamins and minerals
that are adapted to a wide range of agroecological conditions and ensuring that the best germplasm for

1An overall total of more than 340 biofortified crop varieties of 11 crops were released from 2004 to the end of 2018 in over
40 countries. This includes varieties developed and released by other programs. Thousands of other varietal lines are in
testing in these countries, and in over 20 more.
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climate-adaptive as well as food quality traits is used in the breeding of biofortified crops. Biofortified
germplasm and nutrient-rich breeding lines are made available as public goods to national governments,
which can test and further improve these materials for subsequent official release as new crop varieties. Table
1 presents an overview of the numbers of biofortified varieties released, by crop and by region; a detailed map
of releases and testing is available on HarvestPlus’ website.

Table 1. Numbers of Biofortified Crop Varieties Released, 20042018, by crop and by region

Region
Biofortified Crop Total

Africa Asia  LAC
Vitamin A sweet potato 7 7 14
Vitamin A maize 54 1 55
Vitamin A cassava 13 3 16
Vitamin A 10 10
banana/plantain
Iron beans 39 21 60
Iron pearl millet 1 9 10
Iron and zinc lentil 9 9
Iron cowpea 5 3 8
Zinc wheat 10 1 1
Zinc rice 10 10
Zinc maize 7 7
All biofortified crops 124 44 43 21

Additional nutrients in crops improve health, micronutrient status, and cognitive
abilities

Nutrition researchers measure the loss and retention of micronutrients in crops under traditional storage,
processing and cooking conditions to ensure sufficient levels of vitamins and minerals remain in biofortified
foods that target populations eat [15-24]. The degree to which nutrients bred into crops are absorbed and
utilized by the body, a prerequisite to improving micronutrient status, is also studied [25]. Randomized
controlled efficacy trials are conducted to demonstrate the impact of biofortified crops on nutritional status
and functional indicators of micronutrient status (e.g. visual adaptation to darkness for vitamin A crops;
memory, attention, and physical activity for iron crops; and growth and immune competence for zinc crops),
while randomized controlled effectiveness studies provide evidence that biofortified crops can improve the
nutritional status of populations under typical (non-clinical) conditions. Results may vary across countries due
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to differences in adoption rate, consumer preference, deficiency level of the target micronutrient(s) among
target populations, or consumption rate of the crops, or a combination of several of these.

Rigorous external reviews of the impact of biofortification are also taking place. For example, a systematic
review of three randomized efficacy trials on iron-biofortified crops reinforced the conclusion that iron-
biofortified interventions significantly improve iron status—particularly among women and children in low-
income communities who need it most [26, 27]. In addition, a World Health Organization (WHO) and FAO
guidelines review committee was assembled in 2016 to review the scientific evidence and country experiences
of scaling up biofortification; a joint recommendation on biofortification is expected in 2020.

Vitamin A sweet potato

Consumption of vitamin A sweet potato significantly increases body stores of vitamin A across age groups
[28-30]. Following promising results from randomized controlled efficacy trials for vitamin A sweet potato [29,
30], two randomized controlled effectiveness trials were conducted in Uganda and Mozambique, with vitamin
A sweet potato adoption rates reaching over 60 percent among intervention households after four subsequent
growing seasons. In Uganda delivery of vitamin A sweet potato significantly increased vitamin A intake among
children and women in intervention households, and measurably improved vitamin A status among some
children, with a 9.5 percent reduction in the prevalence of low serum retinol [31]. In Mozambique, the delivery
of vitamin A sweet potato doubled vitamin A intakes among intervention households, with vitamin A sweet
potato providing almost the entire total vitamin A intake for children [32]. Also, in Mozambique, consumption
of vitamin A sweet potato by children under five significantly reduced the burden of diarrhea, the second
leading cause of death in this age group globally; the likelihood of experiencing diarrhea was reduced by 39
percent and duration of diarrhea episodes was reduced by more than 10 percent and by 52 percent and 27
percent respectively in children under three [33].

Vitamin A cassava

A randomized controlled efficacy study conducted in Eastern Kenya demonstrated a modest but significant
improvement in vitamin A status among five- to 13-year-old children who consumed boiled and mashed
vitamin A cassava [34]. When retention of provitamin A carotenoids (pVACs) in biofortified cassava varieties
was tested using traditional African cooking methods, it was shown that boiled vitamin A cassava retained
very high pVAC levels and could provide young children who consume it as a staple with 100% of their daily
average vitamin A needs. When processed as gari—as is common in Nigeria—retention was lower yet
sufficient to provide 50 percent of daily average needs. When processed as fufu or chikwangue—as is
common in DRC—retention was much lower still, demonstrating that local context and cooking practices
influence the potential nutrition impact of biofortified crops [24].

Vitamin A maize

A randomized controlled efficacy study conducted in rural Zambia showed that after three months, beta
carotene concentrations and total body stores of vitamin A in five to six-year-old children eating vitamin A
maize increased to a significant extent compared to the control group [35]. A larger trial with over 1,000
marginally malnourished four to eight year-old children in another farming district of Zambia demonstrated
that vitamin A maize consumption significantly increased serum beta-carotene concentrations but did not
improve serum retinol [36]; significant improvements in other carotenoids (a-carotene, B-cryptoxanthin, and
zeaxanthin) were also detected, indicating the potential of vitamin A maize to effect health benefits beyond
improvements in vitamin A status, such as protection from oxidative stress, chronic diseases, and age-related
retinal degeneration [37]. In this same trial, visual adaptation to darkness was assessed; among children who
were vitamin A deficient at baseline, those who consumed vitamin A maize had greater improvement in
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pupillary responsiveness than those in the control group, improving their ability to see in dim light [38].
Another shorter duration study with the lactating mothers of these children showed no increase in mean
breast milk retinol concentration among women who consumed vitamin A maize; however, the plausible
downward trend in the risk of low milk retinol warrants further investigation [39].

Vitamin A biofortification may also help defend against exposure to aflatoxin. Aflatoxins are naturally found
toxins, produced by molds. They can contaminate food crops including maize and can cause an estimated 25
percent of crops loss during production and severe health problems such as congenital disabilities in children
or liver cancer when consumed and exposed long-term [40]. The stunting effect on children is another
potential impact that has been investigated [41]. Farmers may be exposed when handling contaminated crops
[42]. A study conducted in Mexico showed that breeding vitamin A into maize significantly reduced aflatoxin
contamination in the crop [43].

Iron beans

I[ron-biofortified beans have been demonstrated to be efficacious in Rwanda, where a randomized controlled
efficacy study conducted with iron-deficient young women (ages 18—27) showed that regular consumption of
iron beans can significantly increase hemoglobin, ferritin, and total body iron after only 4.5 months [44]. Iron
beans also had a profound effect on cognition: iron-deficient women who ate iron-biofortified beans
experienced improved memory and ability to pay attention [45], key skills for optimal performance at school
and work. Consumption of iron beans also significantly improved behavioral performance in the same
population of young Rwandan women, including better reaction time and efficiency of memory retrieval [46];
this is the first evidence to implicitly show the link between consumption of iron beans, improved iron status,
positive changes in brain activity, and improved cognitive performance. The same study also measured
physical performance, and preliminary results suggest that the improvements in iron status were
accompanied by a reduction in time spent in sedentary activity [47]. Another randomized controlled efficacy
study conducted for six months with school-aged children in Mexico showed no difference in measures of iron
status among children who were fed iron beans compared to children who were fed conventional beans [48].

Iron pearl millet

Iron pearl millet was demonstrated to be an efficacious approach to improve iron status in adolescent children
through a six-month randomized controlled efficacy study conducted in rural Maharashtra, India. After only
four months, iron deficiency was significantly reduced, and serum ferritin and total body iron were significantly
improved in secondary schoolchildren who consumed iron pearl millet flat bread twice daily. Children who
were iron deficient at the beginning of the study were 64 percent more likely to resolve their deficiency by the
end of the six months [49]. Results from the same trial indicate that iron-biofortified pearl millet consumption
also improved the children’s performance in attention and memory tests [50].

Zinc rice

A zinc absorption trial is in progress in Bangladesh, where a randomized controlled efficacy study is also
underway to determine the impact of zinc-biofortified rice consumption on the nutrition outcomes of young
children aged 12—36 months. A previous study compared the absorption of zinc from a biofortified rice variety
to commercially fortified rice in 16 healthy adults; the findings indicated that rice biofortification is as good a
source of bioavailable zinc as postharvest zinc fortification [51].
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Zinc wheat

A large randomized controlled efficacy study including over 3,000 mother-child pairs was conducted in New
Delhi, India. This study demonstrated that when preschool children aged four to six, consumed agronomically
biofortified (i.e., treated with zinc fertilizer) zinc wheat for six months, morbidity outcomes were significantly
reduced: children spent 17 percent fewer days sick with pneumonia and 40 percent fewer days vomiting than
children who consumed foods prepared with conventional wheat. Mothers (non-pregnant, non-lactating) who
consumed foods prepared with zinc-biofortified wheat spent significantly fewer days (9 percent) with fever
than mothers in the control group [52]. Previous studies in Switzerland and Mexico have shown that
absorption of zinc from zinc-biofortified wheat is significantly greater than from conventional wheat, and as
well absorbed as zinc in fortified wheat [53, 54].

Farmers are willing to grow biofortified crops and consumers are willing to eat them

Economists conduct farmer field day evaluations, monitoring surveys, and adoption studies to understand
farmers’ willingness to grow biofortified crops [55]; consumer acceptance studies to understand consumers’
preferences—expressed in terms of their willingness to pay—for biofortified crops and foods, and program
evaluations to understand the cost-effectiveness and impact of the delivery programs implemented [56, 57].
The aim of these studies is to inform the development of biofortified products (both planting material and
food), and delivery models that are acceptable, effective, and scalable.

Vitamin A sweet potato

The_above mentioned randomized controlled effectiveness trials in Mozambique and Uganda evaluated the
impact of two delivery models (one providing more intensive training on nutrition and best agronomics
practices than the other) on vitamin A sweet potato adoption, vitamin A intake, and vitamin A status of
participating households. The study found that 61 percent and 68 percent of participating households adopted
vitamin A sweet potato in Uganda and Mozambique, respectively. No significant differences in the adoption,
vitamin A intake, and vitamin A status outcomes resulted from the two delivery models [58] and the impact of
nutritional training on these outcomes [59]. A follow-up study conducted in Uganda found that adoption rates
remained high in two of the three study areas and that nutrition information was well retained. The area with
the lower adoption rates became a major supplier, but not consumer, of vitamin A sweet potato [60]. These
impact evaluations provided a crucial evidence-base for donors and helped inform the scaling up of
biofortified crops in Uganda [61]. Development and delivery experiences for vitamin A sweet potato in several
countries in Africa South of the Sahara are documented [62] and lessons learned from these experiences are
presented in several publications [63-67].

Sensory evaluation studies conducted in both rural and urban areas of several countries (e.g., Uganda,
Tanzania, Malawi, Mozambique, and South Africa) showed that consumers liked the sensory attributes, such
as appearance, odor, taste and texture, of vitamin A sweet potato, as well as those of various products made
with vitamin A sweet potato such as bread [56, 68, 69]. Studies in rural Uganda revealed that when nutrition
information on the benefits of vitamin A sweet potato was provided, consumers valued the vitamin A-rich
varieties more than white, conventional sweet potatoes [70]. Another study conducted in Mozambique also
found that consumers valued vitamin A sweet potato and that the value was influenced by information on
nutritional benefits [71]. Collectively, these studies highlight the importance of information campaigns in
driving demand for vitamin A sweet potato.

Vitamin A cassava

A consumer acceptance study conducted in two states of Nigeria tested vitamin A cassava gari against local
gari. In the state of Oyo, the local gari tested was made with white cassava, and in the state of Imo it was
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yellow (white cassava mixed with red palm oil), in accordance with regional preferences. In Oyo, consumers
preferred gari made with light-colored vitamin A yellow cassava even in the absence of nutrition information.
Once consumers received information about the nutritional benefits of vitamin A cassava varieties, light-
colored vitamin A yellow cassava remained the most popular, but gari made with deeper-colored vitamin A
yellow cassava was preferred over the local variety. In Imo, on the other hand, in the absence of nutrition
information, local gari was preferred to the gari made with either light- or deeper-colored vitamin A yellow
cassava varieties; however, once consumers were told about the nutritional benefits of vitamin A cassava, gari
made with the deeper-colored yellow cassava was preferred, another example of the importance of information
campaigns in areas where biofortified crops are introduced [72].

A study on vitamin A cassava, this time in Kenya, found that both the caregivers (18- to 45-year-olds) and
children (7- to 12-year-olds) preferred yellow cassava over white cassava because of its soft texture, sweet taste,
and attractive color [73]. A recent study on vitamin A cassava acceptability in Nigeria, compared traditional
West African foods prepared with biofortified, fortified, or conventional products. It showed that consumers
prefer biofortified products. They associated the yellow color with improved eyesight and enhanced health [74].
A study in Uganda, this time evaluating mainly production traits of this crop, found vitamin A cassava be
favorably evaluated by both men and women farmers [75]. A study in Nigeria published in 2019 showed that
production, processing, and marketing of vitamin A cassava products are affected by gender-based
constraints, such high cost of labor, inputs, transporting, and exploitation by middle men. These results
highlighted the importance of having gender-responsive strategies in place to ensure equitable impact and
delivery for both men and women, a critical step in the successful scaling up of biofortified crops [76]. Another
study conducted in Nigeria’s Oyo state with cassava farmers showed vitamin A cassava production to be
highly profitable [77]. Development and delivery experiences for vitamin A cassava in in Nigeria is
documented [78] and lessons learned were summarized [12].

Vitamin A maize

In Zambia, farmer field day surveys conducted in 2012 and monitoring surveys conducted in 2015 confirmed a
strong preference by farmers for both the production and consumption attributes of vitamin A maize varieties
compared with conventional white maize varieties. Farmers appreciated the yield, cob size, and cob-filling
characteristics of the new varieties, as well as the taste and aroma of vitamin A maize preparations. Nearly all
farmers (97 percent) said they would grow vitamin A maize in the next season and that they were planning to
plant four times more seed than they did in the previous (2014—2015) season [79]. A more recent monitoring
survey conducted in 2017 found that almost 100 percent of the farming households who had acquired vitamin
A maize seed planted it, and 87 percent of the harvest was kept for home consumption, and was consumed by
almost all (97 percent) of the women of childbearing age and 96 percent of the children under five residing in
these households, on average on three days in the last seven days. Another promising finding from this survey
was that almost half (44 percent) of the households who grew vitamin A maize, also purchased the grain of
this variety from the market [80].

A consumer acceptance study conducted in rural Zambia showed that consumers valued nshima made with
vitamin A maize more than nshima from white and yellow maize varieties, even in the absence of nutrition
information [81]. When nutrition information was delivered by radio or community leaders, it translated into
even greater acceptance of vitamin A maize. The increases in acceptance were similar regardless of the media
source, implying that radio—which is significantly less costly than face-to-face messaging—can be used to
effectively convey nutrition information. Another study, conducted in rural Ghana, found that consumers
valued kenkey made with vitamin A maize less than kenkey made with either white or yellow maize, but the
provision of nutrition information reversed this preference. An information campaign will be key to driving
consumer acceptance of vitamin A maize in Ghana [32].
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Iron beans

An adoption study conducted in Rwanda in 2015 assessed the adoption and diffusion rates of iron bean
varieties after eight seasons of intensive delivery efforts by HarvestPlus and its partners. Data from this
nationally representative study revealed that 28 percent of rural bean-producing households—about half a
million households—had planted at least one iron bean variety in at least one of the past eight seasons. In the
study season (the first bean-growing season of 2015), an estimated 20 percent of all bean growers in Rwanda
(more than 300,000 rural households) were found to grow iron beans. Further analysis revealed several
encouraging findings: awareness of iron beans is high among bean growers in Rwanda, with over two-thirds
having heard of iron varieties; diffusion levels are high, with four out of ten farmers receiving planting material
from a farmer in their social network; and, the proportion of land farmers allocate to iron beans increases over
time (from 48 percent in season one to 70 percent in season six). Additionally, during the study season, iron
bean varieties made up almost 12 percent of the national bean production, and within households, 8o percent
of iron beans produced were used for household consumption [83]. A monitoring survey conducted in 2017
found that 87 percent of the harvest was kept for home consumption, being consumed by almost all (98
percent) of the women of childbearing age and (95 percent of the) children under five who reside in these
households, while almost one in every five iron bean growing households (i.e., 17 percent) also purchased iron
bean grain from the market for home consumption [84]. Another study investigated the effect of iron bean
adoption on socio-economic welfare of farmers in Eastern Rwanda. In this study, the yield was found to be
significantly enhanced, which indicated potentially higher incomes, and the authors suggested to increase the
efforts towards creating awareness for and facilitating the access to iron beans [85]. Development and delivery
experiences for iron beans in Rwanda is documented [86] and lessons learned from the evaluation of the
program activities can be found in here [87].

Consumer acceptance studies conducted in rural Rwanda showed that even in the absence of nutrition
information, consumers in the Northern Province liked the sensory attributes of a red iron-biofortified bean
variety more than a white iron bean or local bean variety [88]. Nutrition information had a positive effect on the
premium consumers in urban wholesale and retail markets were willing to pay for iron beans: when provided,
both iron bean varieties were preferred to the local variety. When compared across regions, consumers in the
rural Western Province and urban wholesale market also had similar preferences for one of the iron bean
varieties tested, suggesting potential for linking demand and supply [89]. Another analysis of multiple sensory
attributes revealed several opportunities for marketing of iron beans in both rural and urban markets [90].
Similar studies conducted in the LAC region, (in Colombia [91] and Guatemala [92, 93]), also revealed positive
results for consumer acceptance of iron beans.

Iron pearl millet

A consumer acceptance study of bhakri made with iron pearl millet, conducted in rural Maharashtra, India,
revealed that even in the absence of information about the nutritional benefits, consumers liked the sensory
attributes of iron pearl millet grain and the bhakri made from it as much as, if not more than, conventional
pearl millet grain and bhakri. When nutrition information was provided, consumer acceptance and willingness
to pay was even greater [94].

Targeting biofortification interventions for cost-effectiveness and impact

The Copenhagen Consensus ranked interventions that reduce micronutrient deficiencies, including
biofortification, among the highest value-for-money investments for economic development. As per their
analysis, for every USD invested in biofortification, as much as 17 USD of benefits may be gained [95].
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Other ex-ante (before intervention) analysis conducted for several micronutrient-crop and country scenarios
(see e.g., 96, 97), as well as a recent review of such analyses [98] pointed out that biofortification is highly
cost-effective according to the World Bank criteria of cost (in USD) per Disability-Adjusted Life Year (DALY)
saved [76]. These analyses not only revealed the most cost-effective biofortification interventions (which
country and which biofortified crop), but also compared cost-effectiveness of biofortification with those of
other interventions, such as supplementation and fortification, to inform policies and programs [96, 97]. The
results revealed biofortification to be cost-effective in most cases, and exceptions typically involved scenarios
with low substitution and/or consumption of the staple crop [98]. More-in-depth studies modelling the
micronutrient program portfolios looking at biofortification, fortification, and supplementation for iron in
India (Rajasthan) [99], vitamin A in Zambia [100, 101] and zinc in Bangladesh [102], all found biofortification of
the key staples to be one of the most cost-effective strategies for tackling the deficiency of the micronutrient
which can be addressed through biofortification.

Another ex-ante tool that informs targeting of the most impactful biofortification interventions across
micronutrient-crop and country contexts is the Biofortification Priority Index (BPI) [103, 104].For each
micronutrient-crop combination, the BPI ranks countries in Africa, Asia, and LAC, according to the biofortified
crops’ potential impact for alleviating micronutrient deficiency (based on national-level data on production
and consumption of the biofortifiable crop, and the rate of micronutrient deficiency which can be addressed by
the biofortified version of that crop.. In this context, BPI implies a high potential for cost-effectiveness in the
priority countries. For large countries with diverse staple food production and consumption patterns, and with
significant regional differences in micronutrient deficiency rates, sub-national (i.e., within country) BPIs are
developed to inform better targeting of biofortification interventions (see e.g. 105, 106).

Ex post (after intervention) cost-effectiveness of mature biofortification programs, as well as cost figures per
beneficiary reached with biofortified planting material across delivery models, are currently being analyzed. An
available ex-post cost-effectiveness figure is from the above mentioned randomized controlled effectiveness
trial conducted to deliver vitamin A orange sweet potato in Uganda. That study demonstrated that
biofortification costs 15-20 USD per DALY saved [58], which is highly cost-effective per World Bank criteria

1071,

Sustainable Development Goal 2 calls for ending all forms of malnutrition, including micronutrient
deficiencies, by 2030. More than two billion people in the world are currently micronutrient deficient. There are
no silver bullets to achieve this goal, though an understanding of which intervention(s) are most cost-effective,
impactful, and scalable, and in which context, is paramount to developing and implementing targeted,
efficient, and effective policies and programs. Current food systems should and could provide the most
sustainable means to add essential vitamins and minerals into the diet. However, the potential of current food
systems, especially of staple food-based food systems in rural areas of developing countries, for providing
sufficient micronutrients is decreasing at an accelerating rate as a result of climate change [108], while the gap
between the demand and supply of micronutrients is increasing [109]. As the evidence summarized above can
attest, biofortification is scientifically proven to be a feasible, efficacious, acceptable, and cost-effective
agricultural-nutrition intervention which, once scaled, can help close at least some of this gap [110].
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